B.Sc. 1st Semester (Honours) Examination, 2019-20 ELECTRONICS

Course ID : 11711

Course Code : SH/ELC/101/C-1
Course Title : Basic Circuit Theory and Network Analysis
Time: 1 Hour 15 Minutes
Full Marks : 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any three of the following questions:
(a) What are linear circuit elements?
(b) What do you mean by 'Branch' of an electrical network?
(c) Define 'cycle' of an alternating voltage.
(d) Draw the frequency response curve of an RLC Series Circuit.
(e) What are the three types of power used in ac circuit?
(f) What is meant by steady state value of a response?
2. Answer any three of the following questions:
(a) What do you mean by ideal current source? Draw its I-V characteristics.
(b) Define 'peak value' and 'effective value' of an alternating quantity.
(c) Draw the phasor diagram of series R-L circuit.
(d) What is an Impedance Triangle?
(e) For purely resistive circuit excited by a sinusoidal varying voltage, what are the phase angle and power factor?
(f) The resistance of two wires is 25Ω when connected in series and 6Ω when connected in parallel. Calculate the resistance of each wire.
3. Answer any two of the following questions:
$5 \times 2=10$
(a) State Superposition theorem. Determine the current through 10Ω resistor using this theorem.

(b) Derive the transient response of series RL circuit with DC input. Sketch the variation of current and voltage across the inductor.
(c) Calculate the resistance between the terminals A-B.

(d) Using Norton's Theorem, find the current through 10Ω resistor for the given network. 5

4. Answer any one of the following questions:
$6 \times 1=6$
(a) What are Z-parameters and Y-parameters? Derive the expression for Z-parameters in terms of Y-parameters.
$2+4=6$
(b) An RLC Series Circuit consists of $\mathrm{R}=16 \Omega, \mathrm{~L}=0.5 \mathrm{mH}$ and $\mathrm{C}=2 \mu \mathrm{~F}$. Calculate the Quality factor (Q) at resonance, bandwidth and half power frequencies.
$2+2+2=6$
(c) Find the current through the branch $\mathrm{a}-\mathrm{b}$ of the given network using Thevenin's theorem.

